Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1281503, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026856

RESUMO

Background: Deep Vein Thrombosis (DVT) is a common disease, frequently afflicting the lower limb veins of bedridden patients. Intermittent Pneumatic Compression (IPC) is often employed as an effective solution for this problem. In our study, a random selection of 264 patients underwent IPC treatment for either one or 8 hours daily. The rate of severe venous thrombosis was substantially reduced in the IPC-treated group compared to the control group. However, real-time monitoring of blood flow during IPC operation periods remains a challenge, leading to rare awareness of IPC working mechanism on thrombosis prevention. Methods: Here, microfluidic chip methodology is used to create an in vitro vein-mimicking platform integrating venous valves in a deformable channel. Whole blood of patients after knee surgery was perfused into the venous channel at a controlled flow rate obtained from patients with IPC treatment clinically. Results: According to the numerical simulations results, both of an increase in compressive pressure and a decrease in time interval of IPC device can accelarete blood flow rate and the shear stress within the vein. The vein chip experiments also reveal that the fibrin accumulation can be greatly lowered in IPC treated group, indicating less thrombosis formation in future. A time interval of 24 seconds and a maximum contraction pressure of 40 mmHg were proved to be the most effective parameters for the IPC device adopted in our clinical trail. Conclusion: This vein chip presents a novel method for observing the functional mechanisms of IPC device for DVT prevention. It provides crucial data for further standardization and optimization of IPC devices in clinical usage.

2.
Adv Mater ; 35(29): e2210981, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37060549

RESUMO

Remote temperature control can be obtained by a long-focus thermal lens that can focus heat fluxes into a spot far from the back surface of the lens and create a virtual thermal source/sink in the background material, around which the temperature field distribution can be remotely controlled by varying the parameters of the thermal lens. However, because of the lack of negative thermal conductivity, existing thermal lenses have extremely short focal lengths and cannot be used to remotely control the temperature field around the virtual thermal source/sink. In this study, a general approach is proposed to equivalently realize materials with negative thermal conductivity using elaborately distributed active thermal metasurfaces (ATMSs). Subsequently, the proposed ATMS is used to implement a novel thermal lens with a long focal length designed using transformation thermodynamics, and finally realize the ATMS with realistic materials and experimentally verify the performance of the designed long-focus thermal lens (measured focal length of 19.8 mm) for remote heating/cooling. The proposed method expands the scope of the thermal conductivity and provides new pathways to realize unprecedented thermal effects with effective negative thermal conductivity, such as "thermal surface plasmon polaritons," a thermal superlens, the thermal tunneling effect, and the thermal invisible gateway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...